organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shujiang Tu,* Xiaojing Zhang and Jianin Xu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (C–C) = 0.003 Å R factor = 0.061 wR factor = 0.139 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

10-Cyclopropyl-9-(4-hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione

The title compound, $C_{27}H_{33}NO_4$, was synthesized by the reaction of dimedone with 3-methoxy-4-hydroxybenzaldehyde, cyclopropylamium chloride and NaOAc in glycol and water. X-ray analysis reveals that the dihydropyridine ring is in a distorted boat conformation. $O-H \cdots O$ hydrogen bonds involving the hydroxy and carbonyl O atoms link the screw-related molecules into zigzag chains along the *b* axis.

Comment

Acridine derivatives containing the 1,4-dihydropyridine unit belong to a special class of compounds, not only because of their interesting chemical and physical properties, but also owing to their immense utility in the pharmaceutical and dye industries; they are also well known therapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychey, 1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994). Recently, we have reported the synthesis of N-hydroxyacridine-1,8-dione derivatives (Tu, Miao et al., 2004) and the 9-(4-hydroxy-3-methyoxyphenyl)crystal structure of 3,3,6,6,10-pentamethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Tu, Zhang et al., 2004). We now report the crystal structure of the title compound, (I).

The dihydropyridine ring in (I) is in a distorted boat conformation. In this ring, atoms N1 and C3 deviate from the C1/C2/C4/C5 plane by 0.211 (2) and 0.382 (3) Å, respectively (Fig. 1). Both cyclohexenone rings adopt envelope conformations. The dihedral angle between the C1/C2/C4/C5 plane and the benzene ring attached at atom C3 is 88.15 (5)°. The dihedral angle between the cyclopropyl and C1/C2/C4/C5 planes is 72.1 (1)°.

Screw-related molecules are linked via $O-H\cdots O$ hydrogen bonds (Table 2) between the hydroxy O4 and carbonyl O2 atoms, forming zigzag chains along the *b* axis (Fig. 2).

Received 21 October 2004 Accepted 8 November 2004 Online 20 November 2004

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Experimental

Compound (I) was prepared by the reaction of dimedone (4 mmol) with 4-hydroxy-3-methoxybenzaldehyde (2 mmol) and cyclopropylaminium chloride (3 mmol) and NaOAc (3 mmol) in a mixture of glycol (2 ml) and water (1 ml), under microwave irradiation (yield 85%, m.p. 547-548 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

	D = 1.240 M = -3
$C_{27}H_{33}NO_4$	$D_x = 1.240 \text{ Mg m}^{-1}$
$M_r = 435.54$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 799
a = 9.6559 (11) Å	reflections
b = 14.9830 (16) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 16.5393 (19) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 102.754(2)^{\circ}$	T = 193 (2) K
V = 2333.8(5)Å ³	Block, colourless
Z = 4	$0.30 \times 0.22 \times 0.19 \ \text{mm}$
Data collection	
Rigaku Mercury diffractometer	4297 reflections with $I >$
w scans	$R_{int} = 0.040$
Absorption correction: multi-scan	$\theta = 27.5^{\circ}$
(Jacobson, 1998)	$h = -12 \rightarrow 12$
T = 0.076 T = 0.085	$k = 12 \times 12$ $k = 10 \times 10$
$T_{\min} = 0.970, T_{\max} = 0.983$	$k = -19 \rightarrow 19$
25 647 measured reflections	$l = -21 \rightarrow 21$
5340 independent reflections	
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$ wR(F²) = 0.139 S = 1.135340 reflections 296 parameters H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0508P)^2]$ + 0.8174*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0030 (9)

Figure 2

The molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

Table 1 Selected geometric parameters (Å, °).

O1-C6	1.228 (2)	N1-C5	1.396 (2)
O2-C10	1.240 (2)	N1-C1	1.401 (2)
O3-C16	1.374 (2)	N1-C24	1.451 (2)
O3-C27	1.421 (2)	C1-C2	1.349 (2)
O4-C17	1.366 (2)	C4-C5	1.357 (2)
C16-O3-C27	118.10 (14)	C21-C8-C20	108.79 (18)
C5-N1-C24	118.64 (14)	C1-C9-C8	112.71 (15)
C1-N1-C24	122.59 (15)	C11-C12-C22	110.10 (16)
C2-C1-C9	122.44 (16)	C11-C12-C23	110.54 (16)
N1-C1-C9	117.42 (15)	C22-C12-C23	109.61 (16)
C2-C3-C4	108.13 (13)	C11-C12-C13	108.22 (14)
C2-C3-C14	114.34 (14)	C22-C12-C13	108.27 (16)
C4-C3-C14	109.99 (13)	C23-C12-C13	110.06 (16)
C4-C5-C13	122.64 (15)	C5-C13-C12	112.58 (14)
N1-C5-C13	117.14 (14)	O3-C16-C15	125.72 (15)
C6-C7-C8	114.11 (16)	O3-C16-C17	114.12 (15)
C7-C8-C9	107.50 (16)	O4-C17-C18	118.82 (16)
C7-C8-C21	110.59 (17)	O4-C17-C16	122.12 (16)
C9-C8-C21	111.21 (17)	N1-C24-C26	118.32 (17)
C7-C8-C20	109.92 (18)	N1-C24-C25	117.21 (16)
C9-C8-C20	108.80 (17)	C26-C24-C25	59.28 (15)
C2-C3-C14-C15	41.7 (2)	C27-O3-C16-C15	-3.3 (3)

Table 2			
Hydrogen-bonding	geometry	(Å,	°).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4\cdots O2^i$	0.84	1.95	2.713 (2)	151
O4-H4···O3	0.84	2.24	2.687 (2)	114

Symmetry code: (i) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.

H atoms were treated as riding, with an O-H distance of 0.84 Å and C-H distances of 0.95–1.00 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ and 1.5U(C_{methyl},O).

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2000-2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (No. 20372057) and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (No. 01AXL14) for financial support.

References

- Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
- Mandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnar, J. (1994). Anticancer Res. 14, 2633–2636.

Nasim, A. & Brychey, T. (1979). Mutat. Res. 65, 261-288.

- Reil, E., Scoll, M., Masson, K. & Oettmeier, W. (1994). *Biochem. Soc. Trans.* 22, 62s.
- Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2000–2003). *CrystalStructure*. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.
- Tu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. & Shi, D. Q. (2004). Synlett, 2, 255–258.
- Tu, S. J., Zhang, X. J. & Zhu, S. L. (2004). Acta Cryst. E60, o1870-o1872.
- Wysocka-Skrzela, B. & Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.