Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shujiang Tu,* Xiaojing Zhang and Jianin Xu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.061$
$w R$ factor $=0.139$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Printed in Great Britain - all rights reserved

10-Cyclopropyl-9-(4-hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydro-acridine-1,8-dione

The title compound, $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{4}$, was synthesized by the reaction of dimedone with 3-methoxy-4-hydroxybenzaldehyde, cyclopropylamium chloride and NaOAc in glycol and water. X-ray analysis reveals that the dihydropyridine ring is in a distorted boat conformation. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the hydroxy and carbonyl O atoms link the screw-related molecules into zigzag chains along the b axis.

Comment

Acridine derivatives containing the 1,4-dihydropyridine unit belong to a special class of compounds, not only because of their interesting chemical and physical properties, but also owing to their immense utility in the pharmaceutical and dye industries; they are also well known therapeutic agents (Wysocka-Skrzela \& Ledochowski, 1976; Nasim \& Brychey, 1979; Thull \& Testa, 1994; Reil et al., 1994; Mandi et al., 1994). Recently, we have reported the synthesis of N-hydroxy-acridine-1,8-dione derivatives (Tu, Miao et al., 2004) and the crystal structure of 9-(4-hydroxy-3-methyoxyphenyl)-3,3,6,6,10-pentamethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Tu, Zhang et al., 2004). We now report the crystal structure of the title compound, (I).

(I)

The dihydropyridine ring in (I) is in a distorted boat conformation. In this ring, atoms N1 and C3 deviate from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane by 0.211 (2) and 0.382 (3) \AA, respectively (Fig. 1). Both cyclohexenone rings adopt envelope conformations. The dihedral angle between the C1/C2/C4/C5 plane and the benzene ring attached at atom C3 is 88.15 (5) ${ }^{\circ}$. The dihedral angle between the cyclopropyl and $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ planes is $72.1(1)^{\circ}$.

Screw-related molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between the hydroxy O4 and carbonyl O 2 atoms, forming zigzag chains along the b axis (Fig. 2).

Received 21 October 2004 Accepted 8 November 2004 Online 20 November 2004

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Experimental

Compound (I) was prepared by the reaction of dimedone (4 mmol) with 4-hydroxy-3-methoxybenzaldehyde (2 mmol) and cyclopropylaminium chloride (3 mmol) and $\mathrm{NaOAc}(3 \mathrm{mmol})$ in a mixture of glycol (2 ml) and water (1 ml), under microwave irradiation (yield 85%, m.p. $547-548$ K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{4}$
$M_{r}=435.54$
Monoclinic, $P 2_{1 / 2} n$
$a=9.6559$ (11) \AA 。
$b=14.9830$ (16) \AA
$c=16.5393$ (19) \AA
$\beta=102.754(2)^{\circ}$
$V=2333.8(5) \AA^{3}$
$Z=4$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.976, T_{\text {max }}=0.985$
25647 measured reflections
5340 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.139$
$S=1.13$
5340 reflections
296 parameters
H -atom parameters constrained
> $D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 7990 reflections
> $\theta=3.1-27.5^{\circ}$
> $\mu=0.08 \mathrm{~mm}^{-1}$
> $T=193$ (2) K
> Block, colourless
> $0.30 \times 0.22 \times 0.19 \mathrm{~mm}$

4297 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-19 \rightarrow 19$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0508 P)^{2}\right. \\
& \quad+0.8174 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0030(9)
\end{aligned}
$$

Figure 2
The molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

O1-C6	$1.228(2)$	N1-C5	$1.396(2)$
O2-C10	$1.240(2)$	N1-C1	$1.401(2)$
O3-C16	$1.374(2)$	N1-C24	$1.451(2)$
O3-C27	$1.421(2)$	C1-C2	$1.349(2)$
O4-C17	$1.366(2)$	C4-C5	$1.357(2)$
C16-O3-C27	$118.10(14)$	C21-C8-C20	$108.79(18)$
C5-N1-C24	$118.64(14)$	C1-C9-C8	$112.71(15)$
C1-N1-C24	$122.59(15)$	C11-C12-C22	$110.10(16)$
C2-C1-C9	$122.44(16)$	C11-C12-C233	$110.54(16)$
N1-C1-C9	$117.42(15)$	C22-C12-C23	$109.61(16)$
C2-C3-C4	$108.13(13)$	C11-C12-C13	$108.22(14)$
C2-C3-C14	$114.34(14)$	C22-C12-C13	$108.27(16)$
C4-C3-C14	$109.99(13)$	C23-C12-C13	$110.06(16)$
C4-C5-C13	$122.64(15)$	C5-C13-C12	$112.58(14)$
N1-C5-C13	$117.14(14)$	O3-C16-C15	$125.72(15)$
C6-C7-C8	$114.11(16)$	O3-C16-C17	$114.12(15)$
C7-C8-C9	$107.50(16)$	O4-C17-C18	$118.82(16)$
C7-C8-C21	$110.59(17)$	O4-C17-C16	$122.12(16)$
C9-C8-C21	$111.21(17)$	N1-C24-C26	$118.32(17)$
C7-C8-C20	$109.92(18)$	N1-C24-C25	$117.21(16)$
C9-C8-C20	$108.80(17)$	C26-C24-C25	$59.28(15)$
C2-C3-C14-C15	$41.7(2)$	C27-O3-C16-C15	$-3.3(3)$

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4 $\cdots \mathrm{O} 2^{\mathrm{i}}$	0.84	1.95	$2.713(2)$	151
O4-H4 \cdots O3	0.84	2.24	$2.687(2)$	114

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
H atoms were treated as riding, with an $\mathrm{O}-\mathrm{H}$ distance of $0.84 \AA$ and $\mathrm{C}-\mathrm{H}$ distances of $0.95-1.00 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U\left(\mathrm{C}_{\text {methyl }}, \mathrm{O}\right)$.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 20002003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

organic papers

The authors thank the Natural Science Foundation of China (No. 20372057) and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (No. 01AXL14) for financial support.

References

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Mandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. \& Molnar, J. (1994). Anticancer Res. 14, 2633-2636.

Nasim, A. \& Brychey, T. (1979). Mutat. Res. 65, 261-288.
Reil, E., Scoll, M., Masson, K. \& Oettmeier, W. (1994). Biochem. Soc. Trans. 22, 62s.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000-2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Thull, U. \& Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.
Tu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. \& Shi, D. Q. (2004). Synlett, 2, 255-258.

Tu, S. J., Zhang, X. J. \& Zhu, S. L. (2004). Acta Cryst. E60, o1870-o1872.
Wysocka-Skrzela, B. \& Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.

